Category Archives: Resources

How to Prepare to Take AP Physics 1

I really like the new changes to the AP physics course. The new course, AP Physics 1 is more about understanding rather than just plugging and chugging.
It helps to start by building up your conceptual understanding muscles.
To do this, I’d recommend you watch some youtube videos by Veritasium. All of his videos are good, but his ones on physics misconceptions are really great.
For this class I’d recommend you at least watch these:
Can you perceive acceleration?
When is a bungee jumper’s acceleration max?
Three incorrect laws of motion
Khan academy and the effectiveness of science videos (just so you can think about your own learning process and what your preconceived ideas are)
What is gravity?
What forces are acting on you?
Is there gravity in space?
Which hits the ground first?
Misconceptions about falling objects
Best film on newton’s third law, ever.
After that, get a head start on solving some physics problems. For this, try using the site The Physics Classroom.
Start at the top of the list of their topics, and work your way through, making sure you try the practice problems.
Also, I have some free books on Amazon that I think would be really helpful for you, because they’re focused on conceptual understanding and problem solving. For this class, work through these to start:
Electric Circuits, Rotation, and Momentum would also be good because they’re covered in this class, but you won’t get to them until later (and they’re not free).
If you want to practice AP test questions, this book is a good one, written by a physics teacher (not me :).
Good luck!
Advertisements

Preparing to Take Physics: 3. What are significant figures and why are they significant?

When I first learned about significant figures, back in high school, they seemed totally arbitrary and annoying to me. Now, though, I know they’re incredibly important. The rules seem silly at first, but actually they make sense. So, if they seem dumb, please, please stay with me.

Ok, here we go. Let’s say I give you a ruler that only has inches marked on it. (So, none of the little tick marks in between, just 1 inch, 2 inches, etc.) Now, I ask you to measure the height of a cup I have. What answer might you give?

4 inches?

4.5 inches?

4.56712 inches?

Really, you can only say for sure that it’s close to 4 than it is to 5 or 3. You might be able to guess that it’s halfway between 4 and 5, so you could say 4.5 pretty reasonably, but you definitely couldn’t say 4.56712. Because how would you know that?

In science, we’re measuring stuff all the time, and not only do we need to know what we’ve measured, but we also need to know how precisely we’ve measured it. Like, is the acceleration due to gravity really 9.8, or were we only able to measure it to one decimal place? (Actually, it’s different in different places, and even points in slightly different directions if you’re near a big mountain or a pile of gold.)

For example, I was out in the woods one day as a search and rescue volunteer, looking for crime scene evidence, and I was pacing out distances. If you’ve never paced out a distance, when most people take two steps they go a pretty constant distance, maybe 4 feet, so you can use pacing to measure how far you’ve gone. Well, I was out in the woods with the other members ESAR, and we were pacing along looking for evidence, and I found a piece of trash. I reported it to my teach lead and he asked me how far I was from the place we started. I have a 4.5 ft pace, and had gone 5 and a half paces, so I did the math in my head and then, without thinking, said something like 24.75 ft. The team lead was laughed and was like “oh yeah? wow.” Because, here I am being incredibly imprecise, wading through bushes, and I’m telling him that the piece of trash I’ve found is exactly 24 ft and 9 inches away. But, that’s what my math told me.

So, the problem is, when we do math with imprecise numbers, we sometimes get things that look more precise than they are.

Like, if I take 1 and divide it by 3. I get 0.333333333333333333333333333333333333333…

The first two numbers (1 and 3) are integers, I have no idea if they’re 1.4, 1.6, 3.1, or what, but when I divide them, I get something that looks like I’ve measured it out to the infinite decimal place. Silly.

So, we have to watch out for situations where math spits out numbers that don’t mean anything. 

After that first 3, the other 3’s don’t mean anything at all. 1 divided by 3 might be 0.32 or 0.34447. Because, I don’t know whether the 1 was really a 1 or whether it was actually 1.1 but I didn’t have good enough tools to measure that carefully.

Does this make sense?  The key here is that 4 is different from 4.000000000 because if I just say 4, then that might actually be 4.1 or 3.9 or 4.12321111.

Because really, in the real world we don’t often have things that are precise, we only have measurements (unless I say something like “I have 2 dogs.” That’s probably exact. But, I’m 5′ 4″ tall, but I have no idea how many nanometers that is.

I hope that wasn’t boring. I realized partway through that maybe no one cares about sig figs, except that you’re made to calculate them. If you just wanted to learn how to calculate them, you can look through this short powerpoint I made that summarizes all the rules and shows some examples. Feel free to steal it and use it however you like (I mean, within reason):

Significant Figures

What to do to prepare for taking physics: 2. Making sure your math skills are solid

In physics, math suddenly becomes something useful. It’s now a tool that will tell you how quickly something gets somewhere, or how high it will go if you shoot it out of a cannon. This is awesome, but it can also be hard, because if your math isn’t solid then when you’re in the middle of a tough physics problem you might get distracted as you try to figure out how to solve for the root of a quadratic. By the time you figure it out you’ve forgotten why you were solving for it. (Also, this happens to everyone, so it’s not bad, we just want to minimize it as much as possible.) Hopefully, the math has been practiced enough that it’s somewhat second nature, so you can focus on the reasoning behind the math you’re doing.

Luckily, there isn’t too much math you need to know, it’s not too fancy. Here’s a quick quiz you can take to see if you’re ready:

 Math for Physics Diagnostic Quiz

Work through the problems, and if there are some you can’t get that’s no problem, it just means there is some stuff you might want to review before you start your class. Here is the answer key so you can check your answers:

Answer Key

Next, for each question you missed, here’s a homework assignment for you:

1 or 2.  First, watch this video. Then, do this worksheet. Check your answers as you go.

3. First, watch this video. Then, do this worksheet. Check your answers as you go.

4 or 5. First, watch this video on quadratic equations, then watch this video on solving for their roots. Then, do this worksheet. Check your answers as you go.

6. First, if you’re new to vectors, watch this introduction and this overview. Then, watch this video on finding the components of a vector. Work through this worksheet.

7 or 8. Start by reviewing trig ratios with this video. Then, watch this video about how to use them. Then, do this worksheet.

Algebra Review Worksheets for Physics

I noticed in my blog stats today that someone found my site because they searched for “algebra review worksheets for physics.” I didn’t have anything like that here, so I thought I would add some, in case anyone else was wanting to brush up on their math skills before taking physics. 

I do have a page here with a list of Khan Academy topics you should have down before you take physics, but there is also a really great site with free worksheets called Kuta Software. They have free worksheets for everything up to calculus, and what’s especially great is that they all have answers.

Here are the ones I would recommend you do before you take physics:

Trig Problems

Pythagorean Theorem

Inverse Trig Functions

Basic Algebra

Solving Systems of Equations

Somewhat harder systems of equations (harder than what you’ll have to do in physics)

Parabolas

Solving Quadratic Equations

Complex Fractions (These just tend to trip people up, I’ve noticed)

If you can do all these no problem, then you’re ready for basic, algebra-based physics.

If you’re going to take calculus-based physics, you might want to do these, too:

Derivatives

Higher-order derivatives

Product Rule

Quotient Rule

Chain Rule

Derivative at a value

Integration: Power Rule

Integration: Logs and Exponentials

Integration: Substitution

Depending on how in-depth the class is, there may or may not be more that you’ll need to know, calculus-wise, but the above cover the basics as far as being able to take derivatives and integrals goes.

 

Electric Circuits Education Resources

For learning the basics, hands on activities can be great.

Here is one of the coolest things I’ve ever seen for teaching electric circuits:

Squishy Circuits

Of course, the Phet Simulations are also great for inciting interest and sparking curiosity.

 

Now, for some resources for the more advanced:

Electrodynamics (More about E and B fields than Circuits, but great.)

The Art of Electronics (Basically the bible for electric circuits.)

 

Enjoy! And, if you’re somewhere in the middle, or would like a tutorial on problem solving, and the basic laws of circuits like kirchhoff’s and ohm’s laws, you can check out my book.  It’s been either #1 or #2  in electricity principles, and electromagnetism, and AP test guides for months now. If you do check it out I would very much appreciate an honest review (whether you like it or hate it.)